

Using a micro-UAV for ultra-high resolution multisensor observations of Antarctic moss beds

Arko Lucieer, Sharon Robinson (UoW), Darren Turner & Steve Harwin School of Geography & Environmental Studies

University of Tasmania
The 12th International Circumpolar Remote Sensing Symposium
Levi, Finland, 14 – 18 May 2012

Life is getting tougher

Source: Prof. Sharon Robinson

QuickBird 2006

Antarctic Special Protected Area 135

OktoKopter OktoKopter IMU, GPS, multi-rotor Autopilot helicopter Stabilised sensor mount

Digital SLR (Canon 550D) 6-band multispectral sensor

Flight path in Google Earth

Objectives

- To map the spatial extent and health of Antarctic moss beds from UAV photography, multispectral, and thermal imagery
- To capture micro-topography of the moss bed environment based on Structure from Motion (SfM) point clouds

Photo Tourism - Bundler

- Technique: Structure from Motion (SfM)
- Determines location, orientation, and radial distortion of cameras and sparse 3D geometry

PMVS2

- Patch-based Multi-View Stereo
- Furukawa, Y., & Ponce, J. (2009). Accurate, Dense, and Robust Multi-View Stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- Multi-view stereopsis for dense point reconstruction
- Match, expand, filter procedure
- Start with camera positions and sparse point cloud and expand patches
- Filter out false matches

UAV-MVS point cloud

UAV-MVS point cloud

Terrain surface interpolation

Traditional interpolated TIN

OR

Poisson 3D surface construction (Kazhdan *et al.* 2006)

Multispectral imaging sensor 6-bands

Hyperspectral field scans

School of Geography and Environmental Studies – Arko Lucieer

Hyperspectral field scanning

HYPERSPECTRAL SCAN OF MOSS-BED AT ASPA 135 (Casey, Antarctica, 29-01-2012, diffuse irradiance \sim full overcast) Sensor: HyperSpecII (Headwall), spectral binning 2x, integration time 40 ms, gain 3.

Estimated Actual Stress Level:

(DN \sim Digital Numbers of the reflected light intensity in 12-bit digitalization)

Hyperspectral UAV

LiDAR Okto

Conclusions

- UAV is an effective tool to capture the scale niche required for moss bed mapping (and monitoring)
- SfM and multi-view stereo techniques are suitable for dense reconstruction of 3D terrain geometry
- DEM generated from point clouds and DEM derivatives provide important environmental indicators for moss bed health
- Future work will focus on integration of multiple sensors and hyperspectral capabilities

Acknowledgements

- Australian Antarctic Division
- Casey expeditioners
- Australian Research Council
- Dr Christopher Watson (UTAS)
- Prof Richard Coleman (ARC)
- Geoffrey Fenn, Greenability
- Winifred Violet Scott Trust
- School of Geography & Environmental Studies
- Contact details:

Dr Arko Lucieer
University of Tasmania
School of Geography and Environmental Studies
03 6226 2140

Arko.Lucieer@utas.edu.au

http://www.lucieer.net

http://www.terraluma.net

